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I. INTRODUCTION

NonTinear transient analysis of structures, especially those invalving
material nonlinearities, are highly complicated even for the uniaxial case
with a simple constitutive model. In the case of the beam bending
problem for instance, there is a single component of strain
along the longitudinal beam axis. This axial strain component is assumed
to varyv linearly over the cross-section by virtue of the assumption that plane
sections remain plane. However, since the stresses are no longer proportional
to strains in the inelastic range the distribution of stresses can be guite
complex over the cross-section and alonag the length of the beam. Thus, for
a beam which has yie]ded in a certain region the Tine of zero stress or strain
does not coincide with the centroidal axis in that region. Hence, in general
the centroidal axis is not an axis of constant strain for deformations in the

inelastic range.

A two-noded beam column element is often used to analyze inelastic
response of models built up from such elements in conjunction with other
elements. A linear axial displacement field and a cubic transverse dis-
placement field are used in arriving at the stiffness properties of such
an element. If the centroidal axis is used as the reference axis, it
is not possible to satisfy equilibrium in the inelastic range. The
same is true of the linear elastic range, if an axis other than the
centroidal axis is used as the reference axis. Hence, a simple Tinear
elastic analysis with an arbitrary reference axis can be used to demon-
strate the point under consideration.

Another feature of the nonlinear analysis by the finite element method
is the necessity of integrating complex distributions of stresses and

strain energy densities over the volume of the element. Because of the




complexity of the integrand and the domain of integration, recourse to

numerical schemes like Gaussian quadratures, Newton-Cotes, etc. nas to be
made in ovrder to obtain approximate estimates of siress resultants and

total energies. The number of integration points used over the cross-
section and over the length of the beam element determines the degree of
approximation. Accordingly approximate estimates of energies yield

solutions of varying degrees of accuracy which depend upon the order of the E
integration scheme used. For an assessment of the quality of such
approximate solutions it is necessary that an exact solution to a problem

be known. Such a problem along with its accompanying exact solution has been
outlined and a rigorous evaluation of the sensitivity of the guasi-static
response to the order of the integration scheme is made. For problems,
especialiy those involving transient response, for which no exact solutions
can be obtained, only qualitative estimates of sensitivity can be cbtained

by a comparision of numerical solutions using different orders of integration

schemes.



IT. BEAM-COLUMN ELEMENT

In this section the two-noded beam-column element of Fig. 1.a will be
shown to yield inaccurate results when used to model a beam bending elasti-
cally about its centroidal axis, but analyzed with respect to another
reference axis. With the finite element formulation in mind the present
discussion will be confined to Euler-Bernoulli beams subjected to concen-
trated shears and moments. For such a beam the total potential energy of

deformations is given by

ff (U, d° W] dAdx - Pyw(0)-Pow(z)-M, dx (0)- MZdX( 2)
(1)

where u and w are the axial and transverse displacements of the reference
axis and z is measured normal to the .reference axis. Minimization of =

with respect to u and w yields

4 3
d'w =, d-u
El —F - EIA — =0 (2)
dx4 dx3
2 3
en 4 e T - g (3)
dx dx

as the governing equations (see Appendix A for details). Elimination of u

from the above two equations yields the well known equilibrium equation

El Qfﬂ.: 0 (4)
c dx4
where
I =1-7%A (5)

IC in Eq. (5) is the moment of inertia of the cross-section about the
centroidal axis which is separated from the reference axis by Z.

Equation (3) integrates to

=7 du C

ax T GxXt e (6)
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ITI. SENSITIVITY OF RESPONSE TO APPROXIMATIONS OF ENERGY ESTIMATES

a. Exact Solution:

The exact solution of a quasi-static inelastic beam problem will
be developed in order to demonstrate the sensitivity of the response to the
order of the integration scheme used in approximate solutions of the
problem. Consider the cantilever beam of rectangular cross-section of
Fig. 2.a subjected to a bending moment at its tip. The material of the
beam is assumed to be linearly e]astic-—]ihear1y strain hardening as
shown in Fig. 2.b. For monotonic Toading such a material is conservative
and hence the principle of the stationary value of the total potential energy
can be used to obtain the governing Euler-lLagrange equations for the beam.

Euler-Bernoulli hypotheses imply that

2
cx) = -y Lux) (8)
dx
From Fig. 2.b
g = E-Is: if e f_ey (9-a)
= E-lay + Ez(e - ey) if e > ey (9-b)
The total potential energy of the beam of Fig. 2 is given by
w=dev+dev—Md—W| (10)
1 2 dx ' _
V v X"Q
1 2
where : 5
'lE
Wy = (11-a)
2




2 )2

W = 1y, Y+ (e-e ) (11-b)

E2(€-€

V] is the volumz of the beam within which the beam is everywhere elastic and

Vo is the volume within which the strain at every point exceeds the yield
strain, ey

From purely statical considerations it is obvious that the beam of
2
Fig. 2 experiences a constant curvature, g—%—andehenceadz of Fig. 3 is a pure
' dx
constant and not a function of x. This can be shown to be true by minimizing

the total potential energy with respect to.not only wsbut also d2’ assuming
apriori that d2 is a function of x. The Euler-Lagrange equation resulting

from the variation of = with respect to w and d2 implies that the curvature,

2
d gaand d, are both constants.
dx

The two Euler-Lagrange eguations

_d [Jf (& ) a2 d [f d*?dx]—e@a:o (12)
4
d'w
— =0 (13)
dx4

and the associated boundary conditions

3
w(0) = dgi@) = ddwél) =0 (14-a)
and
2
(E,E;)e, b (2-02) 1200 034k  (a3-a3) T g (14-b)

dx

are the result of the variation of = with respect to d2 and w.

Equations (13) through (14) are satisfied by




w=ax2 (15)

where
E d
[—r— )+ (1 - 230 - (B)%]
. 2 E d
,- 3 Eqe,bd, 1 1
4»d-I ey (16)
d E d

[(ﬁﬁ + <—]2) { - (5@3}1

Use of Eq. (15) into Eq. (12) yields

€
ad, = - E‘Z (17)

Substitution of a from Eq. (16) into Eq. (17) yields the cubic equation

rp3-3(r+s)p—2(1-r)=0 (18)
with
d E
=8, r1-2  and s= (19)
1 1 E]Eybd]

For any given values of r and s, Eq. (18) can be solved by trial and error
to obtain the corresponding value of p. The total strain energy of deformation

is then given by

bsE.d
Up = —g= Lo+ (1-r) (1-p%) ) (2ady) P-3re (1-97) (22 )-32r (1-p) ] (20)

T
If the beam is unloaded after being loaded into the inelastic range and if
it is assumed that unloading takes place elastically then it can be easily

verified that the recoverable energy of deformation is given by

UpeEqpndy (3 (ad) ) v B(1-p)-2ad e r(1-r) (1-p7)+ $(1-0)2(1-0) (ad?)] (21)




and the energy dissipated in the process of unloading is

U,=U--U

p-U1 R (22)

b. Approximate Numerical Solutions:

Three numerical solutions to the problem just outlined are obtained via
the minimization of the total potential energy using the three noded beam
elements of Fig. 1.b. and using numerical integration schemes of three &
different orders for the computation of the strain energy of deformations [1]. '
The first two schemes use Gaussian guadratures of two different orders in
that the beam is divided into two strips in one case and intc four strips
in the other case. A twe point Gaussian quadrature formula is used in
each direction (the length and the breadth of the strip). The third scheme
is the Newton-Cotes scheme which uses a cubic interpolation with four
points in each direction. The details of these schemes can be found in
any book on numerical analysis [1]. 1t must be emphasized however that
among integration schemes which imply that the integrand can be approximated
by a polynomial of some order the Gaussian quadrature scheme is the most
efficient. It is well known for instance that only n Gauss points are
sufficient to integrate a polynomial of (2n-1) degree exactly while (n+1)
points are necessary to integrate a polynomial of n-th degree exactly with
the Newton-Cotes integration scheme.

Table 1 shows a comparison of the exact response with that predicted
by the three different integration schemes. Of main interest is the dissipative
energy. It is obvious from these results that a very high order quadrature
is necessary for a good correlation with the exact solution especially for
loads where yielding extends over a major portion of the cross-section of
the beam. The higher the value of s in Table 1 the more extensive the

yielding.




Such Targe variations in the estimates of deformations and energies for
a quasi-static case suggest that a similar study be made in connection with
the nonlinear transient response of structures. Since exact solutions to
the nonlinear transient response of structures are virtually nonexistent one
has to rely on a comparison between numerical solutions using different
integration schemes.

Figure 4 shows the details of a solid cross-section beam clamped at both
ends and loaded impulsively at the center by a triangularly varying impulse.
The material characteristics of this beam are assumed to be as shown in Fig. 2

with o, = 28.96x10'N/m? and E. = 68.95x10°N/m’ and (E,/E;)=0.4286. A numerical

1

analysis of the transient response of this beam is performed using direct energy

minimization at each time step. For the purposes of the integration of strain

energy the two different Gaussian quadrature schemes shown in Fig. 4d are employed.
Figurés 5 and 6 bring out quite vividly the differences in the response

resulting from the use of the two integration schemes. It must be remarked

that the deformation-time plots for the two schemes are very nearly identical

and hence are not shown. The same cannot be said of the acceleration or

energy plots, however. As regards the acceleration-time plot, at certain

instances the accelerations predicted by the two models can be seen to be off

by as much as 100%. The nonlinear character of the model coupled with num-

erical approximations defies predictions of trends in response as evidence

by the crossing of the two response curves. The model with 16 Gauss points

can, in general, be expected to provide a better estimate of dissipation

than the model with 8 Gauss points. It can be seen from Fig. 6 that the model

with 16 Gauss points predicts a higher dissipation than the model with 8

Gauss points by as much as 15% over the interval considered. Again, this

seems to be a peculiarity of these two models and in general one model which

may at any given time predict a dissipation higher than the other may very

Tikely also predict a dissipation lower than the other at another time.

9




Next the sensitivity of the response of thin-walled frame elements is

examined. Such elements can be expected to "tone down" the sensitivity of
response, if any, to the order of the integration scheme. Figure 7 shows half
the finite element model of a horizontal box beam supported on four uprights
and Toaded impulsively at the center. The beam and the supports are assumed to
be made from the same material the stress-strain curve for which is similar to
that of Fig. 2. For the purposes of numerical integration using Gaussian
guadratures each wall of the box section is assumed to be divided into
rectangular strips extending between the two nodes of a frame element with

six degrees of freedom at each node. Table 2 1ists the relevant properties

of the model shown in Fig. 7. Two different integration schemes are employed -
one in which each wall is divided into twe strips and another in which the

same is divided into four strips. As before a two point Gaussian quadrature
formula is used in each direction. In the analysis, the effects of shear
deformations are ignored in the interest of simplicity of the constitutive
model in the inelastic range. An impulsive load is applied at node 3.

Figure 8 shows the plots of acceleration versus time and Fig. 9 shows the
plots of dissipative energy versus time for the two integration schemes.
Although the response is very nearly identical in the initial stages the
responses for the two cases diverge from each other significantly with the
passage of time. As expected the structure is much Tess sensitive to the
order of the integration scheme than the solid beam of Fig. 4. However, it
is again evident that no trends can be determined since both integration schemes
are only approximate. In fact, it would seem that as a result of the approxi-
mations in calculations of the strain energies of deformations upper bound
solutions, even for conforming finite element models, are not guaranteed.
Thus'one scheme may provide a better answer than the other at any given time

but the higher order scheme may be expected to give better results overall.

10



IV. CONCLUSIONS

This study has established the necessity of examining every finite
element used for modeling structural behavior in the inelastic range, for
consistency of assumptions that will quarantee satisfaction of equilibrium.
Furthermore, this study has revealed that structures consisting of frame
members wherein numerical integration has to be used for the purposes of
evaluating stress resultants or strain energies will be sensitive as regards
their accelerations and energy dissipations to the order of the numerical
integration scheme used. This sensitivity can be expected to be more
pronounced for frame members with solid cross-section in comparison with
thin-walled members. This study demonstrates the need for higher order
integration schemes for improved quality of response in the nonlinear range.
Such higher order integration schemes however, would only make the already

expensive numerical analysis of nonlinear response only more so.

11
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Table 1:

Comparison of Beam Response for Various Integration Schemes

Scheme

S

Tip Deflection

Recoverable Energy

Dissipative Energy

51

52

sd

So

5

S92

Exact

1.122489

1.587835

171.19222

269.8933

16.0936

105.2099

Gauss with
32 stress
ref. pts/
element

1.13313

1.58667

171.1086

269.8933

19.5555

85.24097

Gauss with
16 stress
ref. pts/
element

1.06848

1.63969

170.6667

267.6774

0.5803

109.20314

Newton-cotes
with 32
stress ref.
pts./element

1.15733

1.53067

159.5500

255.6100

37.0460

87.7340

where 5] = -

0.8466,

S

- 1.0582

13




Table 2. Properties of the Beam on Elastic Supports

Nodes X Y Lgmped Mass [| Element Length D1 D2 t
m m KiTogram m om o -
1 0.8001 0.0 - 1 0.7620 3.81 1.463 | 0704
2 2.7051 0.0 - 2 0.7620 3.81 1.463 | .0704
3 0.0 0.762 | 0.07793+ 3 0.40005 | 2.9261 | 7.62 L1417
4 0.40005| 0.762 | 0.07793 4 0.40005 | 2.9261 7.62 141
5 1.7526 0.762 | 0.1852 5 0.9525 2.9261 | 7.62 . 141
6 0.8001 0.762 | 0.14988 6 0.9525 2.9261 | 7.62 147
7 2.7051 0.762 1 0.711138

+A non-structural mass of 0.07793 kilogram is assumed to exist at node 3.

14




U(s)=(1—a)U]+g Ups £=x/8

2 3)

W(a)=(1—3£2+2£3)w]+2(£—25 +E 243

2_,.3
81+ (3e%-2e7 W ra(-£%+E7)s,

Figure 1.a. Two Noded Beam-Column Element

U(£)=(1-3e+257) U+ (42-457 YUt (£ 267U

2 3

2 3)

rele-2et+e o’

g +(3a2—2£3)w2+2(—z +£7)8,

W(z)=(1-35%2¢ ) :

Figure 1.b. Three Noded Beam-Célumn Element
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Figure 7.a. Finite Element Model of a Beam on Elastic Supports
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Figure 7.b. Gauss Point Distribution for a Box Section
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er=Barnoul i beam subjected to end snears and momenis.
rimations are referenced
witn 1ts centroidal axis

as the reference axis.

The potential energy expression for such & beam s given by

Eordu dWa2 ipan . odw d
5l - 2 2] dAJA~3?w(O;m?2w(2)~MTd>{D)=M2 =—(2)

I SR PR - ~aE ey 2 -
WATCA UROR Leryoymiag Tns

- 2 4 4 S Y
i zL\‘ U 2 - ! } N [ W

p= BB @2 o7 o Gy yay + EL o () 2ayep
2 & AR 2 0 a0l 1

N ) oAl T P -3 P R A w1 . - oy e ol

where ZA and I are respectively the first and the second moments of the
a i R - LFawmoanarsa o o

area about tne reference axis

iog

the necessary Euler-Lagrenge equations or the equations of equilibrium of

2
- Uy dus oo ey o duy 0 duy ;4%
§n=fh S (?E;)agfl;})dx—EZA [ ()8 (55 dx-E7A S § (5 (S5) dx
c - a 0 - dx 0 ~odxe

Oy L O . . 5 \ w/'u . W
(5506 () dx-P 811 (0)-P 0w (2)-My 8 (F5(0)) - Mzs(d”(z)>=o

Upon requiving that the variation, &w. of the poiential energy vanish

W(O)—Pzw(z)



After integrating by parts the following equations and boundary conditions

are obtained.

4 3
e1 SY - £ S - 0 (A-4a)
dx dx
2 3
en 4 - eza £ - g (A-4b)
dx dx
Either or
2
EA%Q - EZA Q—legl =0 u(0) = uf
dx
3 2
EIM - EZA g__qﬁ_o_l = p W(O) = WX
3 2 1 0
dx dx
c d2(0)  pzy du0) |, dw(0),
dx2 dx 1 dx 0
(A-5a,f)
2
EA%Q - E7A ilgﬂ =0 u(e) = y*
dx
3 2
EId_W_é_%l_ E_Z—Ad—%&)-= _.p.2 w(n) = w*
dx dx
2
d°w(s) _ 5, du(e) _ dw, oy
EI 5 EZA ax M2 dx(z) e;

dx

The starred quantities in the above equations denote prescribed quantities.
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APPENDIX B

a. Cantilever Beam Modeled with a Two-Noded Beam Element:
Tha two noded beam-column element of Fig. l.a. is used to model
2 cantilever beam subjected to a Toad P at its free end. The potential

beam is given by Eq. (A-1) with P1=M1=M2=O and P,=-P.
i1y varified that the substitution of expressions for u{g)

T.a. into this potential energy expression yields

CEAr2 . . 2- EAT
T o= ZEL”]"ZU1U2'U2]' 7 (u2~u]}(ez-e?)

2
1

. EI

2 2
RN L N -2 + 4 - 12w
223 [12w +12w]e]£ 24N]W2 ]2w3922+.e]2 T2mze]2

+4eje2£2 + 12w?2-12w?ezz+49222] + Pw (B-1)

2

Upon reguiring that the variation of = with respect to the nodal variables

Ugs Ups Wys Vo, and 815 65 be zero the following equations are obtained.
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Either or
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Since, for the cantilever beam the nodal displacements Uys Wy and 0,
are all prescribed to be zero the three equations corresponding to unknown

displacements Uss Wy and 0o simplify to

(12w2—6622)+P=0 (B-3a,c)
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The above three equations when solved simu]tanebus]y yield the following

results




whare I =1-4/77
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Furthermore, —5 at the fres end (1.e. at x=2) which 1s provortional to the
dx

moment at tha free end can now be evaluated to be
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Clearly, the above resylis raduce to the correct stirength of materials results

NP
1T IC=I which 95 to say the reference axis coincides with the centroidal axis.
b, Cantilever Beam Modeled with a Three-Neded Beam Elemant:

for the potential energy in this case becomes
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Upon requiving that the variation of = with respect to the nodal variables
Ups Ugs Ugs Wes Wy and 612 85 be zero the egquations corresponding to the

unkinown variables Uss u39 Wo and 92 are
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. EA 8 7 EZA, _ -
(B-6a,d)
Wy 22(8J2 4u3)+23(12w2 6922)+P 0
. EZA El -
Simultaneous solution of these equations yields
2
/D2
U3 = _Z(ZEIC )
2
Un = -7 (_3_9_%_.)
2 8EI, (B-7a,d)
R
2 3EIc
9 = - P’Q’_Z.
2 2EIC

These are identical with the well known strength of materials results.
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